GEOMETRICAL AND ELECTRONIC COOPERATIVITY IN CATION-MEDIATED ELECTROCHEMICAL REDUCTIONS OF ANTHRAQUINONE-SUBSTITUTED PODANDS

Deborah A. Gustowski, Milagros Delgado, Vincent J. Gatto, Luis Echegoyen,* and George W. Gokel* Department of Chemistry, University of Miami, Coral Gables, Florida 33124 U.S.A.

Summary Unlike their nitroaromatic counterparts, podands based upon the anthraquinone skeleton bind cations more strongly when reduced because of a combination of geometrical and electronic factors.

We wish to report the first example of an electrochemically switched anthraquinone podand, the success of which can be attributed to a combination of electronic and geometrical factors. The anthraquinone podands exhibit electrochemically-mediated binding enhancements whereas the nitroaromatic podands¹ previously studied did not. Moreover, the present species undergo electrochemical switching in two discrete steps involving first the formation of an anion and then of a dianion.

The cyclic voltammogram of compound 1^2 in MeCN containing $0.1\underline{M}$ tetrabutylammonium perchlorate (Bu4NClO4, TBAP) is shown in Figure 1, voltammogram A. This compound shows a reversible redox couple at -0.90V (vs. SCE, see Table 1) corresponding to the formation of the anthraquinone anion-radical, and a quasi-reversible redox couple at -1.44V corresponding to the formation of the anthraquinone dianion. Addition of 0.5 equivalents of LiClO4 (Figure 1B) to a millimolar solution of 1 in acetonitrile results in the observation of a new reversible redox couple at -0.58V, and the loss of the original couple which occurred at -1.44V. At 1.0 equivalents of LiClO4 (Figure 1C) only the reversible redox couple at -0.58V remains. These results can be explained with the help of the electrochemical cycle shown in Scheme 1.

In the absence of any cation, the redox couples corresponding to steps 1 and 2 are observed. In the presence of 0.5 equivalents of Li⁺ only steps 1 and 1' are observed. The absence of steps 2 and 2' is probably the result of rapid electron transfer between L⁼ and LM[•]. A similar observation has previously been reported³ for the case where protons rather than metal cations were "complexed."

$$L^{+} + LM^{-} = Equation 1$$

In the presence of 1.0 equivalent of Li⁺, the equilibrium (K₁ in Scheme 1) lies to the right. As a result, the redox couple corresponding to step 1', but not that corresponding to step 1, is observed. The difference in the redox potentials ($\Delta E^{o'}$) between steps 1 and 1' is 0.32V which corresponds to a Li⁺ binding enhancement (K₂/K₁) of 2.6x10⁵.⁴ The cation binding by reduced 1 is stronger than that of lariat ether 2 (see structure and reference 5) by more than 100. The Li⁺ binding enhancement for the latter is 2.4x10³.

We interpret these results in terms of the ligand geometry illustrated in Figure 2. Compounds 1 and 2 both possess rigid anthraquinone units and a polyether portion. In 1, the polyether is attached directly to the 2-oxygen of anthraquinone but in 2, the terminal hydroxymethyl portion of a glycerol unit connects the macroring to the reducible residue. An examination of CPK molecular models leads to the conclusion that podand 1 is more flexible than lariat ether 2. As a result, the polyether portion of 1 can more effectively interact with the anthraquinone-bound cation. This improved interaction forms a stronger ion-pair between lithium cation and the anion-radical which, in turn, leads to a greater binding enhancement than that observed previously⁵ for lariat ether 2. The presence of a strong ion-pair also makes homogeneous electron transfer (Equation 1) a more facile process.

The results obtained from a study of 1 with Na⁺ support the interpretation offered above. When 0.5 equivalents of NaClO₄ (Figure 1D) is added to a solution of 1, four distinct redox couples are observed. These correspond to the original couples (steps 1 and 2 in Scheme 1) and two new couples (steps 1' and 2') which represent the first and second one-electron reductions of the anthraquinone Na⁺ complex. When 1.0 equivalent of NaClO₄ (Figure 1E) is added, only the redox couples corresponding to steps 1' and 2' are observed. Since Na⁺ forms a weaker ion-pair than Li⁺ with the anthraquinone anion-radical, homogeneous electron transfer is less favored. This leads to a species (LM) with a sufficiently long lifetime to observe steps 2 and 2' for the Na⁺ case. The peak separations (Fig. 1E) indicate $\Delta E^{o'}$ values of 0.14V and 0.18V for the anion-radical and the dianion respectively. The sodium cation binding enhancements are therefore 2.3x10² for the anion-radical and 1.1x10³ for the dianion (relative to the anion binding, K₃/K₂).

Electron spin resonance spectra of reduced 1 were obtained by electrolytic reduction of 1 in dry THF, under vacuum, and in the presence of 0.1 \underline{M} TBAP as supporting electrolyte.⁶ The spectrum of 1^{\pm} is shown in Figure 3A. A computer simulation of this spectrum was obtained using

Table 1. Cation Dependence of Anthraquinone Podand Electrochemistry

Cat- ion	Equiv- alent	Epc ¹	Epa ¹	E°1	Epc ²	Epa ²	E°2	Epc3	Epa ³	E°3	Epc ⁴	Epa ⁴	E°4	ΔE ¹⁻²	Enhanc ment 2	е- \ Е ³⁻⁴	Enhance- ment
None		-1.49	-1.39	-1.44				-0.93	-0.86	-0.90							
Li+	0.5							-0.93	-0.82	-0.88	-0.62	-0.54	-0.5	8			
	1.0							_			-0.63	-0.52	-0.5	8		0.32	2 . 6x10 ⁵
Na+	0.5	-1.47	-1.39	-1.43	-1.32	-1.24	-1.28	-0,92	-0.86	-0.89	-0.79	-0.73	-0.7	6			
	1.0				-1.32	-1.19	-1.26				-0,80	-0.72	-0.7	6 0.18	1.1×10 ³	0.14	2 . 3x10 ²

the following coupling constants: $A_{2H} = 0.45$ g, $A_{1H} = 0.67$ g, $A_{2H} = 1.08$ g, and $A_{1H} = 1.34$ g.⁷ The linewidth was 0.11 g. In contrast, when the reduction was accomplished using alkali metals in THF, a drastic change in the spectrum was observed (Fig. 3B). A Li⁺ splitting of 0.22 g was measured which confirmed formation of a strongly ion-paired complex. When Na⁺ was used, a metal splitting of 0.17 g was observed.

The flexibility of podand 1 allows tighter ionic association upon reduction than does 2 or the nitroaromatic podands previously studied. As a result, large binding enhancements are observed for Li⁺ and Na⁺. In the case of Na⁺, enhancements are observed for both the anion-radical and the dianion. The cooperation observed between geometrical and electronic factors are currently being studied in the hope of fine tuning these systems for selective binding enhancement.

Figure 3 Electron Spin Resonance spectrum of 1 alone and in the presence of Li⁺. The spectra were recorded in anhydrous THF solution.

Acknowledgment We warmly thank the National Institutes of Health and W. R. Grace & Co. for support of this work.

Notes and References

1. Morgan, C.R.; Gustowski, D.A.; Cleary, T.P.; Echegoyen, L.; Gokel, G.W.; <u>J.</u> <u>Org.</u> <u>Chem.</u> **1984**, 49, 5008-5010.

2. Compound 1: mp = 70-72 °C; ¹H-NMR (CDCl₃) 3.35 (s, 3H), 3.58-4.09 (m, 14H), 4.34 (t, 2H), 7.30-8.26 (m, 7H); IR (KBr) 1670, 1590 cm⁻¹; <u>Anal</u>. Calcd. for $C_{23}H_{26}O_7$: C, 66.64; H, 6.34%. Found: C, 66.70; H, 6.38%.

3. For a general discussion on proton donor effects, see: Patai, S.; (Ed.), <u>The Chemistry of the Quinonoid Compounds</u>, Wiley, New York, 1974, p. 746.

4. These values were calculated as previously described: Gustowski, D.A.; Echegoyen, L.; Goli, D.M.; Kaifer, A.; Schultz, R.A.; Gokel, G.W.; <u>J. Am. Chem. Soc.</u>, 1984, <u>106</u>, 1633-1635.

5. Echegoyen, L.; Gustowski, D.A.; Gatto, V.J.; Gokel, G.W.; <u>J. Chem. Soc. Chem. Comm.</u>, **1986**, 220-223.

6. Delgado, M.; Echegoyen, L.; Gatto, V.J.; Gustowski, D.A.; Gokel, G.W.; <u>J. Am. Chem. Soc.</u> 1986, <u>108</u>, in press.

7. The subscripts refer to the number of equivalent hydrogens giving rise to the signal.

(Received in USA 28 March 1986)